
Derivation Rules in Fialyzer

fialyzer developers

This file shows derivation rules used in fialyzer.

Our derivation rules are almost same as the original success typings paper*1's one, but
extended by remote call, local call, list, etc.

1. Derivation Rules
Here are the BNFs used in the derivation rules:

𝑒 ::= 𝑣 ∣ 𝑥 ∣ 𝑓𝑛 ∣ {𝑒,⋯,𝑒} ∣ let 𝑥 = 𝑒 in 𝑒 ∣ letrec 𝑥 = 𝑓𝑛,⋯,𝑥 = 𝑓𝑛 in 𝑒∣ 𝑒(𝑒,⋯,𝑒) ∣ case 𝑒 of 𝑝𝑔 → 𝑒;⋯; 𝑝𝑔 → 𝑒 end ∣ fun 𝑓/𝑎 ∣ [𝑒|𝑒] ∣ [] ∣ fun 𝑚:𝑓/𝑎∣ # 𝑒 ⇒ 𝑒,⋯,𝑒 ⇒ 𝑒 ∣ 𝑒# 𝑒 ⇒ 𝑒,⋯,𝑒 ⇒ 𝑒,𝑒 := 𝑒,⋯,𝑒 := 𝑒 (term)𝑣 ::= 0 ∣ 'ok' ∣ ⋯ (constant)𝑥 ::= (snip) (variable)𝑓𝑛 ::= fun(𝑥,⋯,𝑥) → 𝑒 (function)𝑝𝑔 ::= 𝑝 when 𝑔;⋯;𝑔 (pattern with guard sequence)𝑝 ::= 𝑣 ∣ 𝑥 ∣ {𝑝,⋯,𝑝} ∣ [𝑝|𝑝] ∣ [] ∣ # 𝑒 := 𝑝,⋯,𝑒 := 𝑝 (pattern)𝑔 ::= 𝑣 ∣ 𝑥 ∣ {𝑒,⋯,𝑒} ∣ [𝑒|𝑒] ∣ [] ∣ 𝑒(𝑒,⋯,𝑒) (guard)𝑚 ::= 𝑒 (module name. a term to be an atom)𝑓 ::= 𝑒 (function name. a term to be an atom)𝑎 ::= 𝑒 (arity. a term to be a non_neg_integer)𝜏 ::= none() ∣ any() ∣ 𝛼 ∣ {𝜏,⋯,𝜏} ∣ (𝜏,⋯,𝜏) → 𝜏 ∣ 𝜏 ∪ 𝜏∣ integer() ∣ atom() ∣ 42 ∣ 'ok' ∣ ⋯ (type)𝛼,𝛽 ::= (snip) (type variable)𝐶 ::= (𝜏 ⊆ 𝜏) ∣ (𝐶 ∧ ⋯ ∧ 𝐶) ∣ (𝐶 ∨ ⋯ ∨ 𝐶) (constraint)𝐴 ::= 𝐴 ∪ 𝐴 ∣ {𝑥 ↦ 𝜏,⋯,𝑥 ↦ 𝜏} (context. mapping of variable to type)
Here are the derivation rules: VAR𝐴 ∪ {𝑥 ↦ 𝜏} ⊢ 𝑥 : 𝜏,∅

1 T. Lindahl and K. Sagonas. Practical Type Inference Based on Success Typings. InProceedings of the
8th ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming,
pages 167–178. ACM, 2006.

— 1 —

𝐴 ⊢ 𝑒 : 𝜏 ,𝐶 ⋯ 𝐴 ⊢ 𝑒 : 𝜏 ,𝐶 STRUCT𝐴 ⊢ {𝑒 ,⋯,𝑒 } : {𝜏 ,⋯,𝜏 },𝐶 ∧ ⋯ ∧ 𝐶𝐴 ⊢ 𝑒 : 𝜏 ,𝐶 𝐴 ∪ {𝑥 ↦ 𝜏 } ⊢ 𝑒 : 𝜏 ,𝐶 LET𝐴 ⊢ let 𝑥 = 𝑒 in 𝑒 : 𝜏 ,𝐶 ∧ 𝐶𝐴 ⊢ 𝑓𝑛 : 𝜏 ,𝐶 ⋯𝐴 ⊢ 𝑓𝑛 : 𝜏 ,𝐶 𝐴 ⊢ 𝑒 : 𝜏,𝐶 where 𝐴 = 𝐴 ∪ {𝑥 ↦ 𝛼 } LETREC𝐴 ⊢ letrec 𝑥 = 𝑓 ,⋯,𝑥 = 𝑓 in 𝑒 : 𝜏,𝐶 ∧ ⋯ ∧ 𝐶 ∧ 𝐶 ∧ (𝜏 = 𝜏) ∧ ⋯ ∧ (𝜏 = 𝜏)𝐴 ∪ {𝑥 ↦ 𝛼 ,⋯,𝑥 ↦ 𝛼 } ⊢ 𝑒 : 𝜏,𝐶 ABS𝐴 ⊢ fun(𝑥 ,⋯,𝑥) → 𝑒 : (𝛼 ,⋯,𝛼) → 𝜏,𝐶𝐴 ⊢ 𝑒 : 𝜏,𝐶 𝐴 ⊢ 𝑒 : 𝜏 ,𝐶 ⋯𝐴 ⊢ 𝑒 : 𝜏 ,𝐶 APP𝐴 ⊢ 𝑒(𝑒 ,⋯,𝑒) : 𝛽, (𝜏 = (𝛼 ,⋯,𝛼) → 𝛼) ∧ (𝛽 ⊆ 𝛼) ∧ (𝜏 ⊆ 𝛼) ∧ ⋯ ∧ (𝜏 ⊆ 𝛼) ∧ 𝐶 ∧ 𝐶 ∧ ⋯ ∧ 𝐶𝐴 ⊢ 𝑝 : 𝜏,𝐶 𝐴 ⊢ 𝑔 : 𝜏 ,𝐶 PAT𝐴 ⊢ 𝑝 when 𝑔 : 𝜏, (𝜏 ⊆ boolean()) ∧ 𝐶 ∧ 𝐶𝐴 ⊢ 𝑒 : 𝜏,𝐶 𝐴 ⊢ 𝑝𝑔 : 𝜏 ,𝐶 𝐴 ⊢ 𝑏 : 𝜏 ,𝐶 where 𝐴 = 𝐴 ∪ {𝑣 ↦ 𝛼 | 𝑣 ∈ 𝑉𝑎𝑟(𝑝𝑔)} CASE𝐴 ⊢ case 𝑒 of 𝑝𝑔 → 𝑏 ; ⋯ 𝑝𝑔 → 𝑏 end : 𝛽,𝐶 ∧ (𝐶 ∨ ⋯ ∨ 𝐶)where 𝐶 = ((𝛽 = 𝜏) ∧ (𝜏 = 𝜏) ∧ 𝐶 ∧ 𝐶)LOCALFUN𝐴 ∪ {fun 𝑓/𝑎 ↦ 𝜏} ⊢ fun 𝑓/𝑎 : 𝜏,∅𝐴 ⊢ 𝑒 : 𝜏 ,𝐶 𝐴 ⊢ 𝑒 : 𝜏 ,𝐶 LISTCONS𝐴 ⊢ [𝑒 | 𝑒] : list(𝛼 | 𝜏), 𝜏 = list(𝛼) ∧ 𝐶 ∧ 𝐶LISTNIL𝐴 ⊢ [] : list(none()), ∅
if 𝑚 and 𝑓 is atom literal, 𝑎 is non_neg_integer literal MFA𝐴 ∪ {fun 𝑚:𝑓/𝑎 ↦ 𝜏} ⊢ fun 𝑚:𝑓/𝑎 : 𝜏,∅𝐴 ⊢ 𝑚 : 𝜏 ,𝐶 𝐴 ⊢ 𝑓 : 𝜏 ,𝐶 𝐴 ⊢ 𝑎 : 𝜏 ,𝐶

if ⋄ MFAEXPR𝐴 ⊢ fun 𝑚:𝑓/𝑎 : 𝛽, (𝜏 ⊆ atom()) ∧ (𝜏 ⊆ atom()) ∧ (𝜏 ⊆ number()) ∧ 𝐶 ∧ 𝐶 ∧ 𝐶⋄ : neither 𝑚, 𝑓 is atom literal nor 𝑎 is non_neg_integer literalMAPCREATION𝐴 ⊢ # ⋯ : map(), ∅𝐴 ⊢ 𝑒 : 𝜏,𝐶 MAPUPDATE𝐴 ⊢ 𝑒# ⋯ : map(), 𝜏 ⊆ map() ∧ 𝐶𝐴 ⊢ 𝑒 : 𝜏,𝐶 CATCH𝐴 ⊢ catch 𝑒 : any(),𝐶
— 2 —

1.1. Differences from the original paper
The differences from the derivation rules on the original paper are as follows.𝛼, 𝛽, and 𝜏 are clearly distinguished. 𝜏 is a type, and 𝛼, 𝛽 are type variables.

LET is fixed: 𝑒 , not 𝑒.
ABS is modified: 𝜏 and constrained function are omitted.

PAT is modified: type of 𝑔 is boolean(), not true.

CASE is fixed: 𝜏, not 𝜏 . replaced 𝑝 ⋯ 𝑝 with 𝑝𝑔 ⋯ 𝑝𝑔 because these are patterns
with guards.

LOCALFUN is added.

MFA is added.

MFAEXPR is added.

MAPCREATION is added (temporary definition).

MAPUPDATE is added (temporary definition).

...and some variables are 𝛼-converted for understandability.

1.2. Notes

In 𝐴 ⊢ 𝑝 : 𝜏,𝐶 of PAT rule, 𝑝 is not an expression but a pattern. Therefore, we have to
convert 𝑝 to an expression which is the same form of 𝑝.

This is not described in the original paper.

— 3 —

	1. Derivation Rules
	1.1. Differences from the original paper
	1.2. Notes

